Lemma 1: If
Zhu, Z., Xia, Y., & Fu, M. (2011). Attitude stabilization of rigid spacecraft with finite‐time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686-702.
Lemma 2: Let
Lee, J., Jin, M., Kashiri, N., Caldwell, D. G., & Tsagarakis, N. G. (2019). Inversion-free force tracking control of piezoelectric actuators using fast finite-time integral terminal sliding-mode. Mechatronics, 57, 39-50.
Lemma 3:For any real numbers
Zhu, Z., Xia, Y., & Fu, M. (2011). Attitude stabilization of rigid spacecraft with finite‐time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686-702.
Lemma 4:Suppose
Zhu, Z., Xia, Y., & Fu, M. (2011). Attitude stabilization of rigid spacecraft with finite‐time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686-702.
Lemma 5:An extended Lyapunov description of
finite-time stability can be given with the form of fast terminal
sliding mode as
Zhu, Z., Xia, Y., & Fu, M. (2011). Attitude stabilization of rigid spacecraft with finite‐time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686-702.
Lemma 6:Consider the system
Proof:
There exists a scalar
Lipschitz condition:
Definition: TSM and fast TSM can be defined as the following
non-linear differential equation, respectively
According to finite-time stability theory the equilibrium point
Zhao, D., Li, S., & Gao, F. (2009). A new terminal sliding mode control for robotic manipulators. International Journal of control, 82(10), 1804-1813.
Lemma 7:If function
Cheng, L., Hou, Z. G., & Tan, M. (2009). Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica, 45(10), 2312-2318.
Lemma 8: For any real numbers
Lemma 13 : For
Wang, F., & Lai, G. (2020). Fixed-time control design for nonlinear uncertain systems via adaptive method. Systems & Control Letters, 140, 104704.
Lemma 15 : For real variables
Meng, F., Zhao, L., & Yu, J. (2020). Backstepping based adaptive finite-time tracking control of manipulator systems with uncertain parameters and unknown backlash. Journal of the Franklin Institute, 357(16), 11281-11297.
Lemma 17: Let
Lemma 18: Let
Qian, C., & Lin, W. (2001). Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Systems & Control Letters, 42(3), 185-200.
Lemma 19: For
Wang, Y., Song, Y., Krstic, M., & Wen, C. (2016). Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures. Automatica, 63, 374-383.
Lemma 20: For
Wang, Y., Song, Y., Krstic, M., & Wen, C. (2016). Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures. Automatica, 63, 374-383.
Wang, Y., & Song, Y. (2016). Fraction dynamic-surface-based neuroadaptive finite-time containment control of multiagent systems in nonaffine pure-feedback form. IEEE transactions on neural networks and learning systems, 28(3), 678-689.
Lemma 21: